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An Improved Iterative Technique for the Quasi-TEM
Analysis of Generalized Planar Lines

Enrique Drake, Francisco Medina, Member IEEE, and Manuel Horno, Member IEEE

Abstract—The Generalized Bioconjugate Gradient Method
(GBGM) and FFT algorithms are used for the quasi-TEM anal-
ysis of generalized multistrip lines embedded in multilayered
lossless/lossy, iso/anisotropic dielectric and/or magnetic media.
Important computational improvement is achieved by includ-
ing asymptotic extraction techniques in the determination of
the spatial Green’s function matrix. Comparisons with other
iterative procedures are presented. Several practical structures
are analyzed and numerical results are compared with previ-
ously published data.

I. INTRODUCTION

N THE PAST decades, the quasi-TEM approximation

has been extensively used to analyze planar microstrip-
like lines appearing in MIC and MMIC. As it is well
known, quasi-TEM analysis is useful and reasonably ac-
curate at the lower end of the frequency spectrum for many
practical lines involving lossless/lossy dielectric/mag-
netic materials [1].

Under quasi-TEM assumption, the propagation prob-
lem can be reduced to solving the two dimensional La-
place’s equation subjected to the appropriate boundary
conditions. A wide variety of techniques has been used to
solve that problem (conformal mapping, spectral and
variational methods, integral equation method and so on).
When one of these standard methods is applied to the
analysis of planar structures of arbitrary geometry, the ad-
dition of substrate layers and metallizations considerably
complicates the application of the method. This also oc-
curs in the resolution of other electromagnetic problems
(scattering, radiation . . .) in which planar structures are
involved. Owing to this, several iterative procedures have
been recently proposed to deal with this type of problems
[2]-[8]. These iterative techniques, in conjunction with
FFT algorithms, provide an efficient way to solve integral
or matrix convolutional equations. In the case of large
size matrix operators, the primary advantage arising from
the use of recursive algorithms is to circumvent the ex-
cessive storage problems inherent in the Gaussian elimi-
nation or other direct inversion methods. Another argu-
ment for iteratively solving an operator equation is the
obvious fact that the process can be stopped once a pre-
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specified degree of accuracy in the solution is reached.
This generally results in CPU time savings. In addition,
the choice of the initial estimate (starting point of the it-
erative process) is not critical. Therefore, it is not nec-
essary to have previous knowledge of the features of the
solution.

The different versions of the Conjugate Gradient
Method (CGM) are probably the best known iterative
techniques [6]. In contrast to the spectral iterative tech-
niques [3], [7], the CGM offers theoretical convergence
to the exact solution in a finite number of steps (in absence
of round-off error). Nevertheless, in some practical cases,
the spectral iterative techniques (CCST [3], SIM [7]) have
proved to have a higher rate of convergence than the
CGM.

A modification of the CGM has been recently devel-
oped to enhance its rate of convergence: the Generalized
Biconjugate Gradient Method (GBGM) [8]. The GBGM
simultaneously solves both the operator equation and its
adjoint equation, thus avoiding the resolution of the nor-
mal equation associated with non-Hermitian operators—
this is the case in this paper—, which is one of the main
reasons for the slow convergence in the CGM. In the
present paper, we intend to use the GBGM for analyzing
a very general class of planar transmission lines under
quasi-TEM assumption and to compare the GBGM with
other iterative schemes.

Prior to solving the integral equation for the unknown
free charge density per unit length (p.u.l.) on the con-
ducting strips, it is necessary to determine the spatial
Green’s function matrix corresponding to the structure
under analysis. In this paper, we have also focused our
attention on the efficient computation of this quantity. To
achieve this goal, we have used an efficient asymptotic
extraction technique in the determination of the spatial
Green’s function from its spectral representation. The
spectral Green’s function is readily obtained by using the
theory explained in [9], [1]. This technique, together with
the FFT algorithm, has made it possible to minimize
memory storage and CPU time.

In order to illustrate the validity and the strength of the
method, numerical results are presented and compared
with published data for some practical structures.

II. OuTLINE OF THE PROBLEM: QuUASI-TEM ANALYSIS

The cross section of the general planar multiconductor
transmission line to be analyzed is shown in Fig. 1. The
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Fig. 1. Cross-section of a general multilayered multistrip line.

system presents translational symmetry in the direction
perpendicular to the x-y plane. The stratified medium is
made of N layers of lossy iso/anisotropic dielectric or
magnetic substrates. The lower boundary of the configu-
ration (interface Q) is an electric wall and the upper
boundary (interface N) can be considered to be any one
of these three possibilities: grounded plates, magnetic
walls or open boundaries. The transverse permittivity ten-
sor [e;], and the transverse magnetic permeability tensor
[w;] of each layer (i = 1, *++ , N) are assumed to be
complex in order to account for substrate losses in the
analysis. The equivalent permittivity tensor [1] used for
the determination of the inductance matrix, [L], becomes
non-symmetrical if longitudinally magnetized semicon-
ductors or ferrites are involved. In Fig. 1, M interfaces
(me, k=1, - -+, M) are occupied by an arbitrary num-
ber, N, of infinitely thin perfect conducting strips with
arbitrary locations.

The determination of the quasi-TEM propagation pa-
rameters of the line is entirely based on the evaluation of
the complex capacitance matrix per unit length (p.u.l),
[C1, [1]. This evaluation implies the resolution of the fol-
lowing system of integral equations (for N, canonical ex-
citation problems):

M
Vix) = j§1 SDj G;x —x")p;x")dx' xeD; W
pi®) =0 x¢D;, i=1---,M '

where D, is the region occupied by metallizations at the
ith metallized interface, p;(x) and V;(x) are the complex
charge density and the voltage excitation at the ith metal-
lized interface respectively, and Gij(x — x") (i, j = 1,
: + +, M) stand for the values of the spatial Green’s func-
tion at the metallized interfaces.

HI. ArpPLICATION OF THE GBGM-FFT ALGORITHM

The GBGM [8] is an iterative method used to solve the

operator equation A = Y in which 4 is a given linear
operator and / is the unknown to be found for a particular
excitation Y. As it is said in [8], the GBGM is specially
fitted for the solution of the equation AI = Y when the
operator A is non-Hermitian. In general, this is the case

of the operator equation appearing in (1) when substrate
losses, or longitudinally magnetized semiconductors or
ferrites are present. Nevertheless, in the present work we
have checked that the GBGM has a faster convergence
than the ordinary CGM ecven if the operator of (1) is Her-
mitian. .

To solve (1) by means of the GBGM, it is necessary to
discretize that convolutional expression. Two possibili-
ties are available for this purpose: the use of the Method
of Moments (MM) [4], [10] or the direct application of
the GBGM. In the present paper, we choose the latter op-
tion. The total region that takes part in the problem is
divided into N, subintervals of width T. All the functions
which are defined in that region and appear in the iterative
process (including the charge density and the Green’s
functions) are considered to be constant in each subinter-
val and are assumed to be equal to their value at the center
of the subregion. Once the discretization process has been
carried out, in each iteration, the convolutio_ns are eval-
uated at the same points at which the original functions
are sampled. This is what a method of moment practi-
tioner would term as delta function expansion and weight-
ing. 4

At this point, it must be noted that in order to compute
a linear convolution sum in an eflicient way, it is suitable
to approximate that linear convolution by a cyclic discrete
convolution, thus taking advantage of the use of FFT al-
gorithms. After doing this, (1) is reduced to

M
V.(kT) = TFFT™ z}; Gij(n) FFT {p,-}}

Vk/kTeD; i=1,-"-,M ()
where V;(kT) is the voltage (with value 0 or 1) on the kth
point sampled on the strips of the i th metallized interface,
FFT {p;} is the Fast Fourier Transform of the sampled

- charge density at the jth metallized interface including the

zero padding for the regions without metallizations, and
the G,-'j(n) @, j=1, -+, M) are obtained as described
in the following section. Once the discretization process
has been carried out, the computational implementation
of the GBGM is no longer a problem because (2) is just a
system of a linear algebraic equations.

It can be observed that the use of FFT (corresponding
to cyclic convolutions) to compute linear convolution
sums implies that the cross section of the line under study
presents a periodic nature (in the x-axis direction). In fact,
if Tj is the total width of the sampled region (T = N, T),
the equation (2) corresponds to the structure obtained by
the periodic repetition of that region with period 7.
Therefore, the aperiodic sections must be periodically
simulated by introducing two fictitious side walls far away
from the metallized regions. As we will see, the choice
of the width (T) of an appropriate simulating period is a
function of the geometrical characteristics of -each line.
Obviously, really periodic structures are taken into ac-
count in an exact way. ‘
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IV. TREATMENT OF THE GREEN’S FUNCTION MATRIX

The computation of the spatial Green’s function matrix
for a general multilayered configuration cannot be
achieved in closed form. On the contrary, a very simple
systematic algorithm can be implemented to obtain its
Fourier transform. This has been done here by using the
recurrent scheme reported in [9]~valid for non-coplanar
conducting strips—in conjunction with the theory devel-
oped in [1]—which enables us to deal with lossy and mag-
netic substrates. This technique has been recently called
the Equivalent Boundary Method (EBM) [11].

In practice, the eflicient computation of the convolution
sums is achieved by using the Discrete Convolution Theo-
rem and the FFT algorithms. The application of this tech-
nique only requires the knowledge of the spectral Green’s
function matrix. However, a computational question
drives us to build an approximation of the spatial Green’s
function matrix. When the periodic simulation of an aper-
iodic structure is performed, all the discretized functions
must be usually padded with a large number of zeros. This
zero padding may force us to store an excessive amount
of samples with the consequent problems of CPU time
and memory storage limitation. The knowledge of an ap-
proximation of the spatial Green’s function matrix would
allow us to overcome this drawback by keeping only the
part of it which is involved in the convolution process,
i.e., a middle region whose width is twice the total width
of the region with metallizations.

As a first possibility, we might sample the spectral
Green’s functions {Gij (a)}?fj=, and apply the adequate
inverse FFT’s. However, the band-unlimited character of
these spectral functions, specially when i = j, would force
us to keep a high number of samples to reduce the inher-
ent error associated with the spectral truncation. In the
present paper, a new asymptotic extraction technique has
been applied to the diagonal spectral Green’s function
{Gi ()} | to minimize the storage requirements and the
CPU time of these inverse FFT’s. Off-diagonal elements
have not been treated since they exponentially approach
to zero when the spectral variable, «, approaches infinity.

From the studies presented in [9] and [1], it is easy to
check that the asymptotic behavior of the diagonal spec-
tral Green’s function associated with each metallized in-
terfface (=1, -+, M)is

. K
Gi(a) — ==
|exf

fora = too 3)

where

Rl=— “)
- '_i"]K + E;,ysi + E;,y Si+1
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— €y — € 1

2

i i+1
K= Eye T €xy
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Y yx
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Observe that when any substrate adjacent to the metal-
lizations has a complex non-symmetrical permeability
tensor and, therefore, a complex non-symmetrical equiv-
alent permittivity tensor, the asymptotic behavior of the
corresponding Green’s function has not any symmetry
with respect to the spectral variable « (in this sense, we
have in general a non-symmetrical spectral Green’s func-
tion).

In the following, we are going to define auxiliary func-
tions G () associated with the diagonal spectral Green’s
functions G, (). The functions G.() and G;(c) must
have the same asymptotic behavior in the spectral domain
for a given value of i. In addition, the spatial counterpart
of G(e) must be analytically known. In the application
of the asymptotic extraction technique the spectral Green’s
function matrix is first obtained by using the EBM. Then,

~ the auxiliary Gi(«) are substracted from the diagonal

Gi(@fori=1, -+, M.

Let G () be the spectral Green’s function at the ith
metallized interface corresponding to the structure ob-
tained from the original line by removing the upper
boundary and replacing the original substrates by an iso-
tropic and homogeneous medium with dielectric permit-
tivity e, The analytical expression of G'(«) may be eas-
ily obtained from the EBM [9]:

Gi(@) = [el(Ja| + a coth (ahi))]™ Q)

where €., must be chosen in such a way that the possible
non-symmetrical asymptotic behavior of G, («) is accom-
modated, i.e.:

; 1
61:2[{" a>0
+
€ = § € Y a < (6)
€y + el
eﬁ,=——+2 a=0

1

and the effective substrate height A}, although arbitrary
to some extent, has been chosen in such a way that the
condition Re {G.(0)} = Re {G;(0)} is fulfilled. With
this choice, Giy() and Gy (c) are not very different in the
surroundings of « = 0, thus avoiding numerical problems
as we will see later on.

At this point, we can obtain a function matrix

(G (] G.j=1, -+, M) defined as follows:

i G (o) — Giy() fori =j
Gl =1 o

G, (o) fori # j
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A discrete approximation of the corresponding spatial
function matrix [G,(x — x’)] can be built by taking N,
samples (with period equal to 1/T) of [G,(a)] and ap-
plying inverse FFT:

. 1 nid
Gi(mT) = ZFFT™! {G(n/To)}
m,n=—=N,/2,---,N,/2 — 1

Lj=1,--,M ®)

As a consequence of the asymptotic extraction process, -

the functions matrix [G,(«)] has a narrower range of val-
ues significantly different from zero, thus making possible
the drastic reduction of the number N, of samples. This
reduction of N, and the consequent diminution of the size
of the sampled spectral region (N,/T, = 1/T) imply a
larger separation (T) between the contiguous samples in
the spatial domain. Third order spline interpolation is now
used to increase the discretization level. Once the samples
of [G,] in (8) have been interpolated with an interpolation
factor of N;, we have N,; = N;N,, points of [G;(x — x')]
separated by a period T; = T/N,. At this point, it is im-
portant to remember that only the N, samples correspond-
ing to a middle interval—whose width is twice the total

width of the region with metallizations—are going to be

involved in the convolutions. Hence, only N, samples of
the discretized spatial Green’s functions G,(mT,) m =
-N./2, , N./2 — 1 must be computed from
G{(mT) and Go(mT)):

GY(mT) + GimT) fori =j

. 9
G (mT) ®

Gij(mTi) = { . .
‘ fori # j

where G (mT)) are samples of G4(x — x') which are the

- inverse Fourier transforms of infinite combs of samples
of G () taken with period equal to 1/7,. Note that the
functions G (x — x") computed in this way are the spatial
Green’s functions of the asymptotic equivalent structures
keeping the spatial periodicity (with period Tp) in the
x-direction. The functions G, (x — x' Y@ =1, -+, M)
have been analytically obtained as

Giyx — x')
1 P pi wx = x')
InjA’ + jB —_
4me’, “{ JZ ot < To >}

=G+ .
In {Ai - jBi cot <&;——x, )>} (10)
0

+ 1
4me’

where

. ki (1 1
Go = 2T, <ei_,. * EL>
1 + exp (—47hl,/Ty)
2
1 — exp (—4mhi /Ty

B = 3 i=1,-
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Fig. 2. (a) The spectral Green’s function G and the remainder spectral
functions after asymptotic extraction G (with h,, = h) and G, (with A, as
in this work). Note the nonsymmetrical nature of the Green’s function with
respect to a. (b) The middle region of the spatial Green’s function G and
its analytical part G,, for a microstrip configuration on saturated FMS (&
= 100 um, w = 200 pm, € = 15¢,, ¢ = 5(Qm) ', 47M, = 2000 G, H, =
1500 Oe, AH = 75 Oe).

The singularities of G;,(0) have been replaced by the
numerically computed integral averages of G;;(x — x’) in
the central interval [—T/2, T/2]. Finally, the values of
G ;(n) of (2) are worked out from the N, samples of the
spatial Green’s functions Gf;(m) (where the prime mark
denotes the replacement of G;;(0)) by direct FFT’s:

Gj;(n) = FFT {G};(mT)}
mon=—N/2, -+ ,NJ2 1
Lj=1--",M (11)

Once the functions G! :(n) have been computed, (2) is
ready to be solved by GBGM. Since an interpolation pro-
cess is assumed, we must substitute T by T; in (2).

V. NUMERICAL RESULTS

To illustrate the asymptotic extraction technique de-
scribed above, the Fig. 2(a) shows the absolute value of
the real part of the normalized spectral Green’s function
G(e) of a microstrip configuration on saturated FMS sub-
strate longitudinally magnetized. Notice that the presence
of an external longitudinal magnetic field H, makes the
spectral Green’s function be non-symmetrical with re-
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Fig. 3. (a) Several microstrip configurations on a dielectric substrate of ¢,
= 15. (b) Relative error in the self-capacitance of a conducting strip with
the configurations of Fig. 3(a) versus the ratio between the simulating pe-
riod and the width of the metallized region. (—l--E—M--—H) for ()
with w/hy = 1, hy/h, = 20; (—h—~A—~A—~&~) for (I) with w/h, =
1hy/hy = 1. (-A--A--A--A--A-) for (II) with w/h = 1, s/h = 0.1;
(-H--H--N--W-) for (III) with w/h,, =1, b, /b, = 0.1.

spect to o.. If we apply the asymptotic extraction scheme
with the choice h,, = h, the dashed line is obtained for
the remainder Green’s function G)(«). It must be re-
marked that the sharp nature of G}(«) would force us to
have fine sampling. Because of this, the choice of h,, that
makes Re (G,(0)) = Re (G(0)) is more suitable (solid
line). Another advantage of the asymptotic extraction
technique is that the central region of the spatial Green’s
function G(x — x'), involved in the convolution process,
is almost analytically built up (see Fig. 2(b)). The values
of the Green’s function in that region are mainly affected
by the spectral asymptotic behavior, which is analytically
taken into account.

In a previous section, we have justified the need to se-
lect a simulating period for the analysis of aperiodic struc-
tures. In the present work, we have investigated the re-
lation between the suitable size of the periodic window
and the features of the line studied. Fig. 3(b) shows the
relative error introduced for the periodic simulation in the
self-capacitance of a conducting strip under different con-
figurations (see Fig. 3(a)) as a function of the ratio be-
tween the width of the simulating periodic window and
the width of the metallized region. The error is relative to
the value of the self-capacitance when the simulating pe-
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Fig. 4. Rates of convergence of different iterative algorithms for the cal-
culation of (a) the capacitance of a symmetrical stripline on alumina (e, =
9.6. w/h = 1) with 20 or 40 samples on the strip and (b) the self-capaci-
tance of the lower strip of a broadside configuration (e, = 15, w/h = 1).

riod approaches inifinity. Notice that the relative prox-
imity between conductors (specially, grounded plates)
implies a closer confinement of the electromagnetic field
to the metallized region, thus allowing us to reduce the
width of the periodic window.

Another important aspect is to check the improvement
introduced in the rate of convergence of the iterative pro-
cess by the use of the GBGM instead of the ordinary CGM
algorithm. A spectral iterative technique successfully used
in [3] (named CCST) has been also programmed for com-
parison. In Fig. 4(a), we compare the rates of conver-
gence of the CGM, the GBGM and the CCST in the com-
putation of the capacitance per unit length of a sym-
metrical stripline. These results correspond to both 20 and
40 samples on the strip. The 50% reduction in the number
of iterations obtained by using the GBGM instead of CGM
is a very typical result in the structures analyzed. Any-
way, the highest rate of convergence corresponds to the
CCST. Nevertheless, Fig. 4(b) repeats the comparison for
a pair of broadside coupled strips, showing the stagnation
process (one-step improvement is less than the computer
precision) in the CCST. The stagnation problem in the
spectral iterative techniques was observed in [7]. This led
the authors of that paper to modify the algorithm. In re-
lation to the CPU time, the GBGM presented an average
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Fig. 6. (a) Effective relative permeability of a microstrip on a latched gar-
net substrate in [12J(W/h = 0.5, 4 «M, = 1780G, 47M, = 1030 G). (b)
Modal slow-wave factors and attenuation constants for a pair of asym-
metrical strips on two layers in the partially demagnetized state (see [13])
(hy = 100 ym, h, = 100 pm, w, = 160 pm, s = 100 pm, w, = 100 pm,
€1 = €, = 14.9, 4xM, = 870 G, 4xM, = 550 G, dielectric losses: ¢ =
0.001 (€ mm.)”!, magnetic losses: 4 = 0.01, N = 1.5).

of 20 ms per iteration (in the case of 40 samples) on a
VAX-11/785 computer, while the other two algorithms
presented 60 ms per iteration.

Finally, in Figs. 5 and 6, we include the analysis of
some practical structures for comparison purpose. The re-
sults are compared with data reported in the bibliography,

and very good agreement is found. The structure analyzed
in Fig. 5 is an example of multiconductor configuration
with non-coplanar metallizations. Symmetry of this struc-
ture is not taken into account because our aim is to check
the efficiency of the algorithm programmed for the case
of several metallized interfaces. In Fig. 6, a pair of con-
figurations with gyromagnetic substrates are considered
(non-symmetrical spectral Green’s functions are in-
volved).

The method has been exhaustively checked by compar-
ing it with many other data reported in the literature with
similar result. The convergence of the method in complex
cases involving multilayered, lossy and anisotropic ma-
terials has been also verified. We conclude that the results
obtained with the computer programs based on the theory
in this paper are accurate and reliable as long as quasi-
TEM approximation remains valid. So, this method is an
efficient alternative to other methods (for example the
method of moments) applied to the quasi-TEM analysis
of very general planar structures.

V1. CONCLUSION

In this paper, we have presented the quasi-TEM anal-
ysis of a wide class of planar multiconductor transmission
lines by employing the GBGM and FFT algorithms.
Printed conductors are embedded in a layered structure
including dielectrics, semiconductors or magnetic mate-
rials. Natural anisotropy and anisotropy produced by lon-
gitudinal magnetizing fields are accounted for in the anal-
ysis.

The spatial Green’s function matrix is used in the for-
mulation of the problem to reduce memory storage and
CPU time. This matrix is obtained for the multilayered
structure from its spectral domain representation, which
can be readily computed by means of a simple recurrent
scheme (EBM). This process has been significantly ac-
celerated by using an asymptotic extraction technique in
the spectral domain. The singular behavior of the spatial
domain Green’s matrix is analytically taken into account
in such a way that the remainder spectral matrix is a nar-
row band function. In particular, the presence of longi-
tudinally magnetized ferrites or semiconductors—which
results in non-symmetrical spectral Green’s functions—
can be accommodated by using this method.

Several aspects related to the convergence bahavior of
the method have been investigated. The choice of simu-
lating periods to analyze aperiodic lines has been found
to be strongly related to the geometrical features of the
lines. The superiority (in the sense of a faster rate of con-
vergence) of the GBGM over the ordinary CGM algo-
rithm has also been checked. In spite of the fact that CCST
has proved to have the highest rate of convergence, it pre-
sents some stagnation problems. Some examples have
been included to illustrate the strength and the versatility
of the method. Comparisons with published data indicate
that the method presented yields accurate results, thus of-
fering an efficient alternative technique for the quasi-TEM
analysis of planar lines.
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