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An Improved Iterative Technique for the Quasi-TEM

Analysis of Generalized Planar Lines
Enrique Drake, Francisco Medina, Member IEEE, and Manuel Homo, Member IEEE

Abstract–The Generalized ”-Bioconjugate Gradient Method
(GBGM) and FFT algorithms are used for the quasi-TEM anal-
ysis of generalized multistrip lines embedded in multilayered
lossless/lossy, iso/anisotropic dielectric and/or magnetic media.

Important computational improvement is achieved by includ-
ing asymptotic extraction techniques in the determination of

the spatial Green’s function matrix. Comparisons with other

iterative procedures are presented. Several practical structures
are analyzed and numerical results are compared with previ-

ously published data.

I. INTRODUCTION

I N THE PAST decades, the quasi-TEM approximation

has been extensively used to analyze planar microstrip-

like lines appearing in MIC and MMIC. As it is well

known, quasi-TEM analysis is useful and reasonably ac-

curate at the lower end of the frequency spectrum for many

practical lines involving lossless/lossy dielectric/mag-

netic materials [1].

Under quasi-TEM assumption, the propagation prob-

lem can be reduced to solving the two dimensional La-

place’s equation subjected to the appropriate boundary

conditions. A wide variety of techniques has been used to

solve that problem (conformal mapping, spectral and

variational methods, integral equation method and so on).

When one of these standard methods is applied to the

analysis of planar structures of arbitrary geometty, the ad-

dition of substrate layers and metallizations considerably

complicates the application of the method. This also oc-

curs in the resolution of other electromagnetic problems

(scattering, radiation . . . ) in which planar structures are

involved. Owing to this, several iterative procedures have

been recently proposed to deal with this type of problems

[2]-[8]. These iterative techniques, in conjunction with

FFT algorithms, provide an efficient way to solve integral

or matrix convolutional equations. In the case of large

size matrix operators, the primary advantage arising from

the use of recursive algorithms is to circumvent the ex-

cessive storage problems inherent in the Gaussian elimi-

nation or other direct inversion methods. Another argu-

ment for iteratively solving an operator equation is the

obvious fact that the process can be stopped once a pre-
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specified degree of accuracy in the solution is reached.

This generally results in CPU time savings. In addition,

the choice of the initial estimate (starting point of the it-

erative process) is not critical. Therefore, it is not nec-

essary to have previous knowledge of the features of the

solution.

The different versions of the Conjugate Gradient

Method (CGM) are probably the best known iterative

techniques [6]. In contrast to the spectral iterative tech-

niques [3], [7], the CG~ offers theoretical convergence

to the exact solution in a finite number of steps (in absence

of round-off error). Nevertheless, in some practical cases,

the spectral iterative techniques (CCST [3], SIM [7]) have

proved to have a higher rate of convergence than the

CGM .

A modification of the CGM has been recently devel-

oped to enhance its rate of convergence: the Generalized

Biconjugate Gradient Method (GBGM) [8]. The GBGM

simultaneously solves both the operator equation and its

adjoint equation, thus avoiding the resolution of the rzor-
mal equation associated with non-Hermitian operators—

this is the case in this paper—, which is one of the main

reasons for the slow convergence in the CGM. In the

present paper, we intend to use the GBGM for analyzing

a very general class of planar transmission lines under

quasi-TEM assumption and to compare the GBGM with

other iterative schemes.

Prior to solving the integral equation for the unknown

free charge density per unit length (p.u.l.) on the con-

ducting strips, it is necessary to determine the spatial

Green’s function matrix corresponding to the structure

under analysis. In this paper, we have also focused our

attention on the efficient computation of this quantity. To

achieve this goal, we have used an efficient asymptotic

extraction technique in the determination of the spatial

Green’s function from its spectral representation. The

spectral Green’s function is readily obtained by using the

theory explained in [9], [1]. This technique, together with

the FFT algorithm, has made it possible to minimize

memory storage and CPU time.

In order to illustrate the validity and the strength of the

method, numerical results are presented and compared

with published data for some practical structures.

II. OUTLINE OF THE PROBLEM: QuAsI-TEM ANALYSIS

The cross section of the general planar multiconductor

transmission line to be analyzed is shown in Fig. 1. The
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Electric wall, magnetic wall or open boundary
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Fig. 1. Cross-section ofageneral multilayered multistrip line,

system presents translational symmetry in the direction

perpendicular to the.x-y plane. The strati~ied medium is

made of IV layers of lossy iso/anisotropic dielectric or

magnetic substrates. The lower boundary of the configu-

ration (interface O) is an electric wall and the upper

boundary (interface N) can be considered to be any one

of these three possibilities: grounded plates, magnetic

walls or open boundaries. The transverse perrnittivity ten-

sor [q], and the transverse magnetic permeability tensor

[pi] of each layer (i = 1, s 0. , N) are assumed to be
complex in order to account for substrate losses in the

analysis. The equivalent permittivity tensor [1] used for

the determination of the inductance matrix,, [L], becomes

non-symmetrical if longitudinally magnetized semicon-

ductors or ferrites are involved. In Fig. II, M interfaces

(n~, &= l,”””, M) are occupied by an arbitrary num-

ber, NC, of infinitely thin perfect conducting strips with

arbitrary locations.

The determination of the quasi-TEM propagation pa-

rameters of the line is entirely based on the evaluation of

the complex capacitance matrix per unit length (p.u.1),

[C], [1]. This evaluation implies the resolution of the fol-

lowing system of integral equations (for NC canonical ex-

citation problems):

[K(x)=j5.1’Dj

Gij(~ – X’)/3j(X’) &’ x ~~i
(1)

where Di is the region occupied by metallizations at the

ith metallized interface, Pi(x) and Vi(x) are the complex

charge density and the voltage excitation at the ith metal-

lized interface respectively, and Gi j(x – x’) (i, ~ = 1,
. . . M) stand for the values of the spatial Green’s func-

tion & the metallized interfaces.

III. APPLICATION OF THE GBGM-FFT ALGORITHM

The GBGM [8] is an iterative method used to solve the

operator equation AZ = Y in which A is a given linear

operator and Z is the unknown to be found for a particular

excitation Y. As it is said in [8], the GBCJM is specially

fitted for the solution of the equation AZ = Y when the,

operator A is non-l+ermitian. In general, lthis is the case

of the operator equation appearing in (1) when substrate

losses, or longitudinally magnetized semiconductors or

ferrites are present. Nevertheless, in the present work we

have checked that the GBGM has a faster convergence

than the ordina~ CGM even if the operator of (1) is Her-

mitian.

To solve (1) by means of the GBGNl, it is necessary to

discretize that convolutional expression, Two possibili-

ties are available for this purpose: the use of the Method

of Moments (MM) [4], [10] or the dlirect application of

the GBGM. In the present paper, we choose the latter op-

tion. The total region that takes part in the problem is

divided into NP subintervals of width T, All the functions

which are defined in that region and appear in the iterative

process (including the charge density and the Green’s

functions) are considered to be constamt in each subinter-

val and are assumed to be equal to their value at the center

of the subregion. Once the discretization process has been

carried out, in each iteration, the convolutions are eval-

uated at the same points at which the original functions

are sampled. This is what a method of moment practi-

tioner would term as delta function expa~sion and weight-

ing.

At this point, it must be noted that in order to compute

a linear convolution sum in an efficient way, it is suitable

to approximate that linear convolution by a cyclic discrete

convolution, thus taking advantage of the use of FFT al-
gorithms. After doing this, (1) is reduced to

Vk/kT G Di i= l... ,M (2)

where Vi (kT) is the voltage (with value O or 1) on the kth

point sampled on the strips of the i th metallized interface,

FFT { ~j} is the Fast Fourier Transform of the sampled

charge density at the jth metallized interface including the

zero padding for the regions without metallizations, and

the G~j(n) (i, ~ = 1, s “ “ , M) are obtained as described

in the, following section. Once the discretization process

has been carried out, the computational implementation

of the GBGM is no longer a problem because (2) is just a

system of a linear algebraic equations.

It can be observed that the use of FFT (corresponding

to cyclic convolutions) to compute linear convolution

sums implies that the cross section of the line under study

presents a periodic nature (in the x-axis direction). In fact,

if To is the total width of the sampled region (7’0 = NP T),

the equation (2) corresponds to the structure obtained by

the periodic repetition of that region with period To.
Therefore, the aperiodic sections must be periodically

simulated by introducing two fictitious side walls far away

from the metallized regions. As we will see, the choice

of the width (To) of an appropriate simulating period is a

function of the geometrical characteristics of each line.

Obviously, really periodic structures are taken into ac-

count in an exact way.
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IV. TREATMENT OF THE GREEN’S FUNCTION MATRIX

The computation of the spatial Green’s function matrix

for a general multilayered configuration cannot be

achieved in closed form. On the contrary, a very simple

systematic algorithm can be implemented to obtain its

Fourier transform. This has been done here by using the

recurrent scheme reported in [9] —valid for non-coplanar

conducting strips-in conjunction with the theory devel-

oped in [1] —which enables us to deal with lossy and mag-

netic substrates. This technique has been recently called

the Equivalent Boundary Method (EBM) [11].

In practice, the efficient computation of the convolution

sums is achieved by using the Discrete Convolution Theo-

rem and the FFT algorithms. The application of this tech-

nique only requires the knowledge of the spectral Green’s

function matrix. However, a computational question

drives us to build an approximation of the spatial Green’s

function matrix. When the periodic simulation of an aper-

iodic structure is performed, all the discretized functions

must be usuall y padded with a large number of zeros. This

zero padding may force us to store an excessive amount

of samples with the consequent problems of CPU time

and memory storage limitation. The knowledge of an ap-

proximation of the spatial Green’s function matrix would

allow us to overcome this drawback by keeping only the

part of it which is involved in the convolution process,

i.e., a middle region whose width is twice the total width

of the region with metallizations.

As a first possibility, we might sample the spectral

Green’s functions {($ (cY)} K., and apply the adequate

inverse FFT’s. However, the band-unlimited character of

these spectral functions, specially when i = j, would force

us to keep a high number of samples to reduce the inher-

ent error associated with the spectral truncation. In the

present paper, a new asymptotic extraction technique has

been applied to the diagonal spectral Green’s function

{cji(~)}~ ~ to minimize the storage requirements and the
CPU time of these inverse FFT’s. Off-diagonal elements

have not been treated since they exponentially approach

to zero when the spectral variable, a, approaches infinity.

From the studies presented in [9] and [1], it is easy to

check that the asymptotic behavior of the diagonal spec-

tral Green’s function associated with each metallized in-

terface(i = 1, “ “ o ,M)is

where

j being the imaginary unit ~, and

(3)

(4)

(“ )
1/2

sic +–@

EYY

[ + 6$.,
Ri = “y

2E;Y
(i=l, ”””, it f).

Observe that when any substrate adjacent to the metal-

lizations has a complex non-symmetrical permeability

tensor and, therefore, a complex non-symmetrical equiv-

alent permittivity tensor, the asymptotic behavior of the

corresponding Green’s function has not any symmetry

with respect to the spectral variable u (in this sense, we

have in general a non-symmetrical spectral Green’s func-

tion).

In the following, we are going to define auxiliary func-

tions G~,(a) associated with the diagonal spectral Green’s

functions G,i (a). The functions G~,(cx) and Gil (a) must

have the same asymptotic behavior in the spectral domain

for a given value of i. In addition, the spatial counterpart

of G~$(cx) must be analytically known. In the application

of the asymptotic extraction technique the spectral Green’s

function matrix is first obtained by using the EBM. Then,

the auxiliary ~~,(a) are subtracted from the diagonal

C“((X)f Ori = 1, “ “ “ ,M.

Let ~~~(a) be the spectral Green’s function at the ith

metallized interface corresponding to the structure ob-

tained from the original line by removing the upper

boundary and replacing the original substrates by an iso-

tropic and homogeneous medium with dielectric permit-

tivity e~~. The analytical expression of ~~,(a) may be eas-

ily obtained from the EBM [9]:

c:.(a) = [e:.(IcYI+ a coth (c&j,))] -1 (5)

where e~~must be chosen in such a way that the possible

non-symmetrical asymptotic behavior of G,,(a) is accom-

modated, i.e.:

‘[:-
1

e’+ ‘ —
2K:

CY>o

1
e:~ =

‘~ = 2Kf
(?4<0 (6)

~ _ Er+ + Et_
co —

2
(2!=0

and the effective substrate height h ~,, although arbitrary

to some extent, has been chosen in such a way that the

condition Re {~~,(0)} = Re { Gii (0)} is fulfilled. With

this choice, ~~,(a) and ~ii (a) are not very different in the

surroundings of a = O, thus avoiding numerical problems

as we will see later on.
At this point, we can obtain a function matrix

[G](a)] (i, j = 1, “ “ “ , M) defined as follows:

[

G,](~) – Gj~(~)
Gj(a) =

fori=j

G,J (CY)
(7)

fori #j”
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Adiscrete approximation of thecomesponding spatial

function matrix [Gd (x – x’)] can be built by taking NP

samples (with period equal to 1/7’.) of [~’d (a)] and ap-

plying inverse FFT:

G~(mT) = ~FFT-l {@(n/TO))

m,n=–Np/2, ”””, ~v/2–l

i,j=l, ”””, M. (8)

As a consequence of the asymptotic extraction process,

the functions matrix [Gd (a)] has a narrower range of val-

ues significantly different from zero, thus making possible

the drastic reduction of the number NP of samples. This

reduction of NP and the consequent diminution of the size

of the sampled spectral region (NP / To = 1/T) imply a
larger separation (T) between the contiguous samples in

the spatial domain. Third order spline interpolation is now

used to increase the discretization level. Once the samples

of [Gd] in (8) have been interpolated with an interpolation

factor of Ni, we have NPi = NiNP points of [Gd(x – x’)]

separated by a period Ti = T/Ni. At this point, it is im-

portant to remember that only the NC samples correspond-

ing to a middle interval-whose width is twice the total

width of the region with metallizations—are going to be

involved in the convolutions. Hence, only NC samples of

the discretized spatial Green’s functions G,J(mT,) m =
–NC/2, “ “ “ , Nc/2 – 1 must be computed from

G~(mz) and G~,(mTJ:

where G~~(mTi) are samples of G~,(x – x‘ ) which are the
~inverse Fourier transforms of infinite combs of samples

of ~~(a) taken with period equal to 1/To. Note that the

functions G~(x – x’) computed in this way are the spatial

Green’s functions of the asymptotic equivalent structures

keeping the spatial periodicity (with period To) in the

x-direction. The functions G~,(x – x’) (i == 1, . “ . , M)
have been analytically obtained as

G:,(x – X’)

where

“=%$’$)
~i = 1 + exp (–47rh~/To)

2

~i = 1 – exp (–47rh~~/To)

2
i=l, . . ..M.

n
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Fig. 2. (a) The spectral Green’s function ~ and the remainder spectral

functions after asymptotic extraction ~~ (with has = h) and cd (with ha, as

in this work), Note the nonsymmetrical nature of the Green’s function with

respect to a. (b) The middle region of the spatia[ Green’s function G and

its analytical part G.n for a microstrip configuration on saturated FMS (h

= 100 ~m, w = 200 pm, e = 156., u = 5(tlm)-’, 4rrM, = 2000 G, HO =

1500 Oe, AH = 75 Oe).

The singularities of Gij (0) have been replaced by the

numerically computed integral averages of Gij (x – x’) in

the central interval [– T/2, T/2]. Finally, the values of

G~j(n) of (2) are worked out from the N= samples of the

spatial Green’s functions G~j(m) (where the prime mark

denotes the replacement of Gij (0)) by direct FFT’s:

m,n=–Nc/2, . . .. N2/l–l

i,j=l, . . ..M (11)

Once the functions ~~j (n) have been computed, (2) is

ready to be solved by GBGM. Since am interpolation pro-

cess is assumed, we must substitute T by Ti in (2).

V. NUMERICAL RESULTS

To illustrate the asymptotic extraction technique de-

scribed above, the Fig. 2(a) shows the absolute value of

the real part of the normalized spectral Green’s function

@cY) of a microstrip configuration on saturated FMS sub-

strate longitudinally magnetized. Notice that the presence

of an external longitudinal magnetic field Ho makes the

spectral Green’s function be non-symmetrical with re-
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Fig. 3. (a) Several microstrip configurations on a dielectric substrate of c,
– 15. (b) Relative error in the self-capacitance of a conducting strip with—

the configurations of Fig. 3(a) versus the ratio between the simulating pe-
riod and the width of the metallized region. (~) for (I)
with w/hi = 1, hz/h, = 20; (—A--—A—A-) for (I) with w/lr, =

1, h2/h, = 1: (-A--A --A--A--A-) for (II) with w/h = 1, s/h = 0,1;
(-~--m--~ --~-) for (III) with w/hi, = 1, h,/hl = 0.1.

spect to a. If we apply the asymptotic extraction scheme

with the choice hus = h, the dashed line is obtained for

the remainder Green’s function ~: (cY). It must be re-

marked that the sharp nature of ~j (a) would force us to

have fine sampling. Because of this, the choice of h,, that

makes Re (~.,,(0)) = Re ((?(0)) is more suitable (solid

line). Another advantage of the asymptotic extraction

technique is that the central region of the spatial Green’s

function G(x – x’), involved in the convolution process,

is almost analytically built up (see Fig. 2(b)). The values

of the Green’s function in that region are mainly affected

by the spectral asymptotic behavior, which is analytically

taken into account.

In a previous section, we have justified the need to se-

lect a simulating period for the analysis of aperiodic struc-

tures. In the present work, we have investigated the re-

lation between the suitable size of the periodic window

and the features of the line studied. Fig. 3(b) shows the

relative error introduced for the periodic simulation in the

self-capacitance of a conducting strip under different con-

figurations (see Fig. 3(a)) as a function of the ratio be-

tween the width of the simulating periodic window and

the width of the metallized region. The error is relative to

the value of the self-capacitance when the simulating pe-

=0 5 10
NUMBER OF ITERATIONS

(a)

I r )----
-0 20

NUMBER ;: ITERATIONS

(b)

Fig. 4, Rates of convergence of different iterative algorithms for the cal-
culation of (a) the capacitance of a symmetrical stripline on alumina (e, =
9.6. w/h = 1) with 20 or 40 samples on the strip and (b) the self-capaci-
tance of the lower strip of a broadside configuration (c, = 15, w/h = 1).

riod approaches inifinity. Notice that the relative prox-

imity between conductors (specially, grounded plates)

implies a closer confinement of the electromagnetic field

to the metallized region, thus allowing us to reduce the

width of the periodic window.

Another important aspect is to check the improvement

introduced in the rate of convergence of the iterative pro-

cess by the use of the GBGM instead of the ordinary CGM

algorithm. A spectral iterative technique successfully used

in [3] (named CCST) has been also programmed for com-

parison. In Fig. 4(a), we compare the rates of conver-

gence of the CGM, the GBGM and the CCST in the com-

putation of the capacitance per unit length of a sym-

metrical stripline. These results correspond to both 20 and

40 samples on the strip. The 50 % reduction in the number

of iterations obtained by using the GBGM instead of CGM
is a very typical result in the structures analyzed. Any-

way, the highest rate of convergence corresponds to the

CCST. Nevertheless, Fig. 4(b) repeats the comparison for

a pair of broadside coupled strips, showing the stagnation

process (one-step improvement is less than the computer

precision) in the CCST. The stagnation problem in the

spectral iterative techniques was observed in [7]. This led

the authors of that paper to modify the algorithm. In re-

lation to the CPU time, the GBGM presented an average
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and very good agreement is found. The structure analyzed

in Fig. 5 is an example of multiconcluctor configuration

with non-coplanar metallizations. Symmetry of this struc-

ture is not taken into account because our aim is to check

the efficiency of the algorithm programmed for the case

of several metallized interfaces. In Fig. 6, a pair of con-

figurations with gyromagnetic substrates are considered

(non-symmetrical spectral Green’s functions are in-

volved).

The method has been exhaustively checked by compar-

ing it with many other data reported in the literature with

similar result. The convergence of the method in complex

cases involving multilayered, lossy’ and anisotropic ma-

terials has been also verified, We conclude that the results

obtained with the computer programs based on the theo~

in this paper are accurate and reliab Ie as long as quasi-

TEM approximation remains valid. So, this method is an

efficient alternative to other methods (for example the

method of moments) applied to the quasi-TEM analysis

of very general planar structures.

VI. CONCLUSION

In this paper, we have presented the quasi-TEM anal-

ysis of a wide class of planar multiconductor transmission

lines by employing the GBGM and FFT algorithms.

Printed conductors are embedded in a layered structure

including dielectrics, semiconductors or magnetic mate-

rials. Natural anisotropy and anisotropy produced by lon-

gitudinal magnetizing fields are accounted for in the anal-

ysis,

The spatial Green’s function matrix is used in the for-

mulation of the problem to reduce memory storage and

CPU time. This matrix is obtained for the multilayered
~ I mode c -------- [13] I ~ structure from its spectral domain representation, which

i3”21’f?_z!-zziijO”
ii~lll ,., ,,”)TLl)T(b’/fl_\ ‘“ - -“ I

tn
tn
CJ

‘2
0.03

2 100

Fd~Q (f3iz)

(b)

Fig. 6. (a) Effective relative permeability of a microstrip on a latched gar-
net substrate in [12](W/h = 0.5, 4 TM. = 1780G, 4tIrM, = 1030 G). (b)
Modal slow-wave factors and attenuation constants for a pair of asym-
metrical strips on two layers in the partially demagnetized state (see [13])
(h, = 100 pm, !-r, = 100 ~m, w, = 160 #m, s = 100 pm, w, = 100 pm,

E,I = % = 14.9, 47rkft = 870 G, 47rJ4, = 550 G, dielectric losses: u =
0.001 ($2 mm.)-’, magnetic losses: A = 0.01, N = 1,5).

of 20 ms per iteration (in the case of 40 samples) on a

VAX- 11/785 computer, while the other two algorithms

presented 60 ms per iteration.

Finally, in Figs. 5 and 6, we include the analysis of

some practical structures for comparison purpose. The re-

sults are compared with data reported in the bibliography,

can be readily computed by means of a simple recurrent

scheme (EBM). This process has been significantly ac-

celerated by using an asymptotic extraction technique in

the spectral domain. The singular behavior of the spatial

domain Green’s matrix is analytically taken into account

in such a way that the remainder spectral matrix is a nar-

row band function. In particular, the presence of longi-

tudinally magnetized ferrites or semiconductors—which

results in non-symmetrical spectral Green’s functions—

can be accommodated by using this method.

Several aspects related to the convergence bahavior of

the method have been investigated. The choice of simu-

lating periods to analyze aperiodic lines has been found

to be strongly related to the geometrical features of the

lines. The superiority (in the sense of a faster rate of con-

vergence) of the GBGM over the ordinary CGM algo-

rithm has also been checked. In spite of the fact that CCST

has proved to have the highest rate of convergence, it pre-
sents some stagnation problems. Some examples have

been included to illustrate the strength and the versatility

of the method. Comparisons with published data indicate

that the method presented yields accurate results, thus of-

fering an efficient alternative technique for the quasi-TEM

analysis of planar lines.
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